
Surviving Client/Server:
All About Aliases
by Steve Troxell

When using the Borland
Database Engine (BDE) with

Delphi, the most common ap-
proach for connecting your appli-
cation to the database is through
an alias. An alias is an external defi-
nition for the location and type of
the database and is set up using the
BDE Configuration Utility. Your
applications access the database
by referring to the alias name. This
technique provides a layer of
encapsulation that allows you to
easily point your application to dif-
ferent physical databases simply
by redefining the alias definition.

For example, during develop-
ment your database will reside in a
certain location (file server, hard
drive, directory). However, when
you deploy the application at a cli-
ent’s site, the location may not be
exactly the same as it was back at
the office. All you need to do is
change the location of the data-
base in the BDE alias at the client’s
site. No alterations to the program
code are needed.

The TDatabase Component
Within a Delphi program, you
typically make the connection
between the application and BDE
alias through a single TDatabase
component on the application’s
main form. Although an explicit
TDatabase component is not strictly
required for a database applica-
tion, it greatly simplifies managing
the database connections. With a
TDatabase you will centralize the as-
signment of the external database
to the internal dataset components
(TTable, TQuery and TStoredProc).
By setting the AliasName property
of the TDatabase to the BDE alias for
your database, you establish a link
between the application and the
database. You then assign an
application specific alias in the
TDatabase’s DatabaseName property.
This is a new name you make up for

the database that you will use inter-
nally within the application for all
the dataset components. It is
known only within your applica-
tion, other BDE applications have
no way of connecting with this
internal alias name.

To complete the chain, you now
set the DatabaseName property of all
your dataset to be the same as the
DatabaseName of your TDatabase
component. All your dataset com-
ponents are now channeled

through the centralized TDatabase
whenever they access the data-
base. This scheme is shown in
Figure 1.

Note that it is possible to con-
nect dataset components directly
to an external alias by setting the
component’s DatabaseName prop-
erty to the external alias name.
This is illustrated in Figure 2. As
you can see from these two illustra-
tions, one advantage of using the
TDatabase to centralize database

Database

TDatabase
DatabaseName: TEST

TQuery2
DatabaseName: TEST

TQuery1
DatabaseName: TEST

TTable1
DatabaseName: TEST

External Alias
"IBLOCAL"

➤ Figure 1

Database

TQuery2
DatabaseName: IBLOCAL

TQuery1
DatabaseName: IBLOCAL

TTable1
DatabaseName: IBLOCAL

External Alias
"IBLOCAL"

➤ Figure 2

12 The Delphi Magazine Issue 8

access is that you can instantly
change the database reference of
all the components in your applica-
tion by assigning a new AliasName
to the TDatabase component.

This may be desirable during
development if you kept multiple
versions of the database for differ-
ent purposes. You may have a
baseline database used for testing
and/or demonstrations and repre-
senting the last stable build of the
database structure and contents.
You may have a separate develop-
ment database to try out new data
modification logic without risking
the baseline database. Individual
developers may also have local
copies of the database. Or, you
may be supporting more than one
database server and have multiple
copies of the database on different
platforms.

For development, each of these
could have a separate BDE alias
and you could easily switch be-
tween them by simply changing the
AliasName property of the TDatabase
component. It is far easier to do
this than to keep redefining the
same external BDE alias for each
database you want to use. It would
even be possible to have the alias
name assigned to the TDatabase
component at runtime through a
registry setting or INI file value
(note that you should still have a
‘default’ alias assigned to the
TDatabase at design time or you
won’t be able to see live data at
design time).

Controlling The Login Dialog
The application will attempt to log
into the database whenever the
TDatabase component’s Connected
property is set to true. This can
happen when the Connected prop-
erty is explicitly set, or when any of
the dataset components bound to
the TDatabase are activated. The
TDatabase component has a default
login dialog box which allows the
user to enter a username and pass-
word. Most developers want to
override this spartan dialog box
and substitute their own. This is
accomplished by adding an OnLogin
event handler and setting the
Username and Password parameters
for the LoginParams list (as shown in

Listing 1). Obviously, you will sub-
stitute whatever values the user
entered in place of the hard coded
values shown in this example (a
more thorough discussion of this
technique can be found in Xavier
Pacheco’s article Customized
Logins in the November 1995
issue).

Transaction Processing
TDatabase is also where you control
transaction processing by using
the StartTransaction, Commit and
Rollback methods. Once you begin
a transaction, all subsequent data-
base activity is handled as a single
unit; either it all gets written to the
database or none of it does. For
example, if you needed to transfer
funds from one bank account to
another, you will have to debit one
account and credit the other. But if
for some reason one of the opera-
tions fails, you want to avoid post-
ing the other: it’s all or none. For
example, let’s say you wanted to
transfer $100 from account 123 to
account 789. Assume we have two
TQuery components (one to debit
account 123 and one to credit
account 789) bound to a common
TDatabase as shown in Listing 2.

Now if either Query1 or Query2
raises an exception, whatever
effect either of them had on the
database will be ‘undone’ by the
Rollback method. If they are both
successful, then execution falls to
the Commit method and the changes

of both queries are posted in the
database.

The TSession Component
When you have dataset compo-
nents bound to a TDatabase, they
are ‘aware’ of the TDatabase
through the Session variable.
Session is an instance of TSession
that is automatically created for
you (just as Application is an auto-
matically created instance of
TApplication). Session manages all
of the database components within
an application and, as we’ll see in a
moment, provides a wealth of
functionality to examine BDE
aliases.

Since the dataset components
can communicate with the
TDatabase component through
Session, you are free to create
forms and units that may be shared
among more than one application.
Suppose, for example, you have an
integrated system of multiple
applications all accessing the same
database. Shared forms or units
could be compiled into different
applications as long as the dataset
components use the same
DatabaseName as the application’s
TDatabase. This can be achieved by
adopting a standard naming
convention for DatabaseName prop-
erties within the applications, or
by passing the DatabaseName into
the unit and having the unit assign
it to the dataset components
programmatically.

Database1.StartTransaction;
try
 Query1.ExecSQL; { INSERT INTO AccountTrans (AcctNo, Amount)
 VALUES (’123’, -100) }
 Query2.ExecSQL; { INSERT INTO AccountTrans (AcctNo, Amount)
 VALUES (’789’, 100) }
 Database1.Commit;
except
 Database1.Rollback;
 raise;
end;

➤ Listing 2

procedure TForm1.Database1Login(
 Database: TDatabase; LoginParams: TStrings);
begin
 LoginParams.Values[’USERNAME’] := ’sysdba’;
 LoginParams.Values[’PASSWORD’] := ’masterkey’;
end;

➤ Listing 1

14 The Delphi Magazine Issue 8

➤ Figure 3

procedure TMainForm.FormCreate(Sender: TObject);
begin
 Session.GetAliasNames(AliasNames.Items);
 AliasNames.ItemIndex := 0;
 AliasNamesClick(nil);
end;

procedure TMainForm.AliasNamesClick(Sender: TObject);
begin
 AliasTables.Clear;
 AliasProcs.Clear;
 with AliasNames do
 Session.GetAliasParams(Items[ItemIndex], AliasParams.Lines);
 AliasServerName.Text := AliasParams.Lines.Values[’SERVER NAME’];
end;

procedure TMainForm.ShowDBObjectsBtnClick(Sender: TObject);
var
 I: Integer;
begin
 with AliasNames do begin
 Session.GetTableNames(Items[ItemIndex], ’’,
 False, False, AliasTables.Items);
 try
 Session.GetStoredProcNames(Items[ItemIndex], AliasProcs.Items);
 except
 end;
 end;
end;

➤ Listing 3

You should note that an applica-
tion’s Session variable is not avail-
able to DLLs loaded by that
application. Nor can you pass data-
base VCL components as parame-
ters into a DLL routine. The
database VCL is heavily bound to
the application’s BDE environment
and DLL usage of the application’s
database components could crash
the system.

One technique for encapsulating
dataset components within a DLL
is to pass the BDE alias name used
by the application and the user-
name and password used to log in,
and have the DLL dynamically
create an instance of TDatabase
using those values to make an
independent connection to the da-

tabase. The DLL’s dataset compo-
nents could then use this database
connection. This does result in an
extraneous login to the database
so you’ll have to judge for yourself
whether or not to use this
approach.

Reading IDAPI.CFG
Information for all the external BDE
aliases are stored in the file
IDAPI.CFG. You can examine this
file from within a Delphi applica-
tion through the Session variable.
The program shown in Figure 3 and
Listing 3 illustrates how this is
done (this example program is
available on this issue’s free disk).

When the program starts up, we
use TSession’s GetAliasNames

method to return a list of all aliases
defined in IDAPI.CFG. Then we use
the method GetAliasParams to dis-
play the parameters for the cur-
rently selected alias. You’ll notice
that the parameter list returned by
GetAliasParams is conveniently of
the form <param>=<value>, so we
can use the Values property in the
TStrings class to look up any par-
ticular parameter we want. In this
example, we are showing the serv-
er name parameter for the cur-
rently selected alias in the edit box
in the middle of the form.

Finally, if the user clicks the Show
Objects button, we can use the
Session variable to obtain a list of
all the tables and all the stored pro-
cedures (if applicable) in the data-
base pointed to by the alias. We use
GetTableNames to see all the tables
and GetStoredProcNames to see all
the stored procedures. This infor-
mation is not stored within
IDAPI.CFG, so when you use either
of these two methods, Delphi at-
tempts to log into the database to
obtain these lists.

The declaration for procedure
GetTableNames is shown in Listing 4.
Several additional parameters are
provided for filtering the list of ta-
ble names. DatabaseName is really
the alias name you are interested
in. With the Pattern parameter, you
can supply a wildcard match string
to filter the table names. Either the
standard DOS tokens (* and ?) or
the SQL tokens (% and _) can be
used. For desktop databases, when
the Extensions parameter is true
the filename extensions are in-
cluded in the table names re-
turned. For SQL databases, when
the SystemTables parameter is true
internal system tables are also
included in the return list.

You can add a new alias by click-
ing the New Alias button. This
launches the dialog shown in
Figure 4 with corresponding code
shown in Listing 5. We will be using

procedure GetTableNames(
 const DatabaseName,
 Pattern: string;
 Extensions, SystemTables:
 Boolean; List: TStrings);

➤ Listing 4

April 1996 The Delphi Magazine 15

the BDE API function DbiAddAlias to
write the new alias into IDAPI.CFG.
This form gathers the information
needed by DbiAddAlias.

First we use Session’s method
GetDriverNames to fill the Driver
Type combo box dropdown list with
all the currently installed BDE
drivers. The user enters a name for
the new alias. Then, when the user
selects a driver from the dropdown
list, we use Session’s method
GetDriverParams to fill the grid with
the appropriate parameters for
that BDE driver along with the
default values for the driver.

To do this we loop through the
list of driver parameters and split
each string apart into the parame-
ter name and parameter value and
place each piece in one of the grid
columns. We use a simple utility
routine called Split to break the
string up (the code is not shown
here, but can be found in the exam-
ple project on this issue’s free
disk). The user now has the oppor-
tunity to change any or all of the
parameters shown before clicking
OK to save the new alias.

Ironically, although the PASSWORD
parameter is actually returned by
GetDriverParams, DbiAddAlias does
not accept it as a valid parameter
for SQL drivers. So, we must delib-
erately exclude this from the list of
parameters.

When saving the new alias, the
program ultimately falls into the
SaveAlias routine at the bottom of
the listing. Here we copy all the
driver parameters into a single
null-terminated string in the format
of <parametername>: <value> with a
semi-colon between each parame-
ter (be sure not to include a semi-
colon after the last parameter). To
actually write the new alias in the
IDAPI.CFG file, we use DbiAddAlias.
This function is defined in the
DbiProcs unit and the interface defi-
nition for this unit can be found in
file \DELPHI\DOC\DBIPROCS.INT.
The declaration for this function is
shown in Listing 6.

Cfg is a handle to the BDE con-
figuration for the current session.
This is not needed for BDE version
2.5 so we simply pass nil. AliasName
and DriverType simply contain the
names of the alias and driver

procedure TNewAliasForm.FormCreate(Sender: TObject);
begin
 Session.GetDriverNames(Driver.Items);
 with DriverParamsGrid do begin
 Cells[0, 0] := ’Parameter:’;
 Cells[1, 0] := ’Value:’;
 RowCount := 2;
 end;
end;

procedure TNewAliasForm.DriverClick(Sender: TObject);
var DriverParamsList: TStringList;
 I: Integer;
 ParamName: String;
 ParamValue: String;
begin
 DriverParamsList := TStringList.Create;
 try
 with Driver do
 Session.GetDriverParams(Items[ItemIndex], DriverParamsList);
 { Populate the driver parameters grid }
 with DriverParamsGrid do begin
 RowCount := 1;
 for I := 0 to DriverParamsList.Count - 1 do begin
 Split(DriverParamsList.Strings[I], ’=’, ParamName, ParamValue);
 if ParamName <> ’PASSWORD’ then begin
 Cells[0, I + 1] := ParamName;
 Cells[1, I + 1] := ParamValue;
 RowCount := RowCount + 1;
 end;
 end;
 FixedRows := 1;
 SetFocus;
 end;
 finally
 DriverParamsList.Free;
 end;
end;

procedure TNewAliasForm.OkBtnClick(Sender: TObject);
begin
 try
 { Evil things happen to BDE when the alias is an empty string }
 if Alias.Text = ’’ then
 raise Exception.Create(’Must supply an alias name’);
 if Driver.ItemIndex = -1 then
 raise Exception.Create(’Must supply a driver type’);
 SaveAlias;
 except
 ModalResult := mrNone;
 raise;
 end;
end;

procedure TNewAliasForm.SaveAlias;
var AliasName: array[0..25] of char;
 DriverName: array[0..25] of char;
 Params: PChar;
 TempStr: array[0..255] of char;
 I: Integer;
begin
 StrPCopy(AliasName, Alias.Text);
 StrPCopy(DriverName, Driver.Text);
 Params := StrAlloc((DriverParamsGrid.RowCount - 1) * 255);
 try
 { Assemble the driver parameters in a single null-terminated string }
 StrPCopy(Params, ’’);
 with DriverParamsGrid do begin
 for I := 0 to RowCount - 2 do begin
 StrPCopy(TempStr, Cells[0, I + 1] + ’: ’ + Cells[1, I + 1] + ’;’);
 StrCat(Params, TempStr);
 end;
 end;
 case DbiAddAlias(nil, @AliasName, @DriverName, Params, True) of
 DBIERR_INVALIDPARAM : raise Exception.Create(’Invalid Param’);
 DBIERR_NAMENOTUNIQUE : raise Exception.Create(’Alias already exists’);
 DBIERR_OBJNOTFOUND : raise Exception.Create(
 ’Invalid driver parameter’);
 DBIERR_UNKNOWNDRIVER : raise Exception.Create(’Invalid driver’);
 end;
 finally
 StrDispose(Params);
 end;
end;

➤ Listing 5

16 The Delphi Magazine Issue 8

respectively. Params is the string of
driver parameters we assembled
from the grid. This list need not
contain all of the driver parame-
ters. The default values defined
within the BDE are assumed for any
missing parameters. If Params is nil,
then default values are assumed
for all driver parameters. Persist
simply indicates if this is a perma-
nent alias (if true) written to

IDAPI.CFG, or an application-
specific alias (if false) for the
current session only. The error
values returned by DbiAddAlias are
defined in the DbiErrs unit (whose
interface section can be found in
\DELPHI\DOC\DBIERRS.INT).

Summary
We have seen how Delphi helps us
to manage database connections

through the TDatabase component
and how we can obtain a great deal
of information about all the avail-
able aliases through the TSession
class. In addition, we have also
seen how to create our own aliases
through code using the BDE API.
Delphi provides more database
functionality than one might think,
if you know where to look.

Steve Troxell is a Software
Engineer with TurboPower
Software where he is developing
Delphi Client/Server applications
using InterBase and Microsoft SQL
Server for parent company Casino
Data Systems. Steve can be
reached on the internet at
stevet@tpower.com and also on
CompuServe at 74071,2207

➤ Figure 4 function DbiAddAlias(
 Cfg: Pointer;
 AliasName, DriverType, Params:
 PChar; Persist: Bool): Word;

➤ Listing 6

	The TDatabase Component
	Controlling the Login Dialog
	Transaction Processing
	The TSession Component
	Reading IDAPLCFG
	Summary

